Tuesday, 7 November 2017

Autoregressiv Bevegelig Gjennomsnitt Arma Prosess


Autoregressive bevegelige gjennomsnittlige feilprosesser (ARMA-feil) og andre modeller som involverer feilfeil, kan estimeres ved hjelp av FIT-setninger og simulert eller prognose ved å bruke SOLVE-setninger. ARMA modeller for feilprosessen brukes ofte til modeller med autokorrelerte rester. AR-makroen kan brukes til å spesifisere modeller med autoregressive feilprosesser. MA-makroen kan brukes til å spesifisere modeller med bevegelige gjennomsnittsfeilprosesser. Autoregressive feil En modell med førstegangs autoregressive feil, AR (1), har skjemaet mens en AR (2) feilprosess har skjemaet og så videre for høyere rekkefølge prosesser. Merk at s er uavhengige og identisk fordelte og har en forventet verdi på 0. Et eksempel på en modell med en AR (2) komponent er og så videre for høyere rekkefølge prosesser. For eksempel kan du skrive en enkel lineær regresjonsmodell med MA (2) glidende gjennomsnittlige feil som hvor MA1 og MA2 er de bevegelige gjennomsnittsparametrene. Legg merke til at RESID. Y automatisk er definert av PROC MODEL, da ZLAG-funksjonen må brukes til MA-modeller for å avkorte rekursjonen av lagene. Dette sikrer at de forsinkede feilene starter ved null i forsinkelsesfasen og ikke propagerer manglende verdier når forsinkelsesperiodevariabler mangler, og det sikrer at fremtidige feil er null i stedet for å bli savnet under simulering eller prognoser. For detaljer om lagfunksjonene, se avsnittet Laglogikk. Denne modellen som er skrevet ved hjelp av MA-makroen, er som følger: Generell form for ARMA-modeller Den generelle ARMA (p, q) prosessen har følgende form En ARMA (p, q) modell kan spesifiseres som følger: hvor AR i og MA j representerer de autoregressive og bevegelige gjennomsnittsparametrene for de ulike lagene. Du kan bruke noen navn du vil ha for disse variablene, og det finnes mange tilsvarende måter som spesifikasjonen kan skrives på. Vector ARMA prosesser kan også estimeres med PROC MODEL. For eksempel kan en tovariabel AR (1) prosess for feilene i de to endogene variablene Y1 og Y2 spesifiseres som følger: Konvergensproblemer med ARMA-modeller ARMA-modeller kan være vanskelig å estimere. Hvis parametrisestimatene ikke er innenfor det aktuelle området, øker de gjenværende betingelsene for flyttende gjennomsnitt eksponentielt. De beregnede residualene for senere observasjoner kan være svært store eller kan overflyte. Dette kan skje enten fordi feil startverdier ble brukt eller fordi iterasjonene flyttet vekk fra rimelige verdier. Pasienten bør brukes til å velge startverdier for ARMA-parametere. Startverdier på 0,001 for ARMA-parametere virker vanligvis hvis modellen passer godt til data og problemet er godt betinget. Legg merke til at en MA-modell ofte kan tilnærmet seg med en høy-ordnet AR-modell, og omvendt. Dette kan resultere i høy kollinearitet i blandede ARMA-modeller, som igjen kan forårsake alvorlig dårlig konditionering i beregningene og ustabiliteten til parameterestimatene. Hvis du har konvergensproblemer mens du vurderer en modell med ARMA-feilprosesser, kan du prøve å estimere i trinn. Bruk først en FIT-setning for å estimere bare strukturparametrene med ARMA-parametrene holdt til null (eller til fornuftige tidligere estimater hvis tilgjengelig). Deretter bruker du en annen FIT-setning for å bare estimere ARMA-parametrene, ved hjelp av strukturelle parameterverdier fra første runde. Siden verdiene til strukturparametrene sannsynligvis vil være nær de endelige estimatene, kan ARMA parameter estimatene nå konvergere. Til slutt, bruk en annen FIT-setning for å produsere samtidige estimater av alle parametrene. Siden de første verdiene til parametrene nå er sannsynligvis ganske nær deres endelige felles estimater, bør estimatene konvergere raskt hvis modellen passer for dataene. AR Initial Conditions De første lagene av feilvilkårene for AR (p) - modellene kan modelleres på forskjellige måter. De autoregressive feiloppstartsmetodene som støttes av SASETS-prosedyrer, er følgende: Kondisjonerende minst firkanter (ARIMA og MODEL-prosedyrer) ubetingede minstefirkanter (AUTOREG, ARIMA og MODEL-prosedyrer) maksimal sannsynlighet (AUTOREG, ARIMA og MODEL-prosedyrer) Yule-Walker (AUTOREG Hildreth-Lu, som sletter de første p-observasjonene (kun MODEL-prosedyre) Se kapittel 8, AUTOREG-prosedyren, for en forklaring og diskusjon av fordelene ved ulike AR (p) oppstartsmetoder. CLS, ULS, ML og HL initialiseringer kan utføres av PROC MODEL. For AR (1) - feil, kan disse initialiseringene produseres som vist i tabell 18.2. Disse metodene er ekvivalente i store prøver. Tabell 18.2 Initialiseringer utført av PROC MODEL: AR (1) FEIL De første lagene til feilvilkårene for MA (q) - modellene kan også modelleres på forskjellige måter. Følgende gjennomsnittlige feiloppstartsparadigmaer for bevegelige gjennomsnitt er støttet av ARIMA - og MODEL-prosedyrene: ubetingede minstefeltene betingede minstefirkanter Den betingede minstefirkantmetoden for estimering av gjennomsnittlig feilvilkår er ikke optimal fordi den ignorerer oppstartsproblemet. Dette reduserer estimatets effektivitet, selv om de forblir objektive. De innledende forsinkede residuene, som strekker seg før data begynner, antas å være 0, deres ubetingede forventede verdi. Dette introduserer en forskjell mellom disse residuene og de generaliserte minstkvadratresiduene for den bevegelige gjennomsnittlige kovariansen, som, i motsetning til den autoregressive modellen, fortsetter gjennom datasettet. Vanligvis er denne forskjellen konvergerende raskt til 0, men for nesten uforanderlige bevegelige gjennomsnittsprosesser er konvergensen ganske treg. For å minimere dette problemet, bør du ha rikelig med data, og de gjennomsnittlige parameter estimatene skal ligge godt innenfor det inverterbare området. Dette problemet kan korrigeres på bekostning av å skrive et mer komplekst program. Ubetingede minimale kvadrater estimater for MA (1) prosessen kan produseres ved å spesifisere modellen som følger: Flytte-gjennomsnittlige feil kan være vanskelig å estimere. Du bør vurdere å bruke en AR (p) tilnærming til den bevegelige gjennomsnittsprosessen. En bevegelig gjennomsnittsprosess kan vanligvis være godt tilnærmet av en autoregressiv prosess hvis dataene ikke har blitt jevnet eller differensiert. AR Macro SAS makro AR genererer programmeringsuttalelser for PROC MODEL for autoregressive modeller. AR-makroen er en del av SASETS-programvaren, og ingen spesielle alternativer må settes for å bruke makroen. Den autoregressive prosessen kan brukes på strukturelle ligningsfeilene eller til den endogene serien selv. AR-makroen kan brukes til følgende typer autoregresjon: ubegrenset vektor autoregresjonsbegrenset vektor autoregresjon Univariate Autoregression For å modellere feilbegrepet for en ligning som en autoregressiv prosess, bruk følgende setning etter ligningen: For eksempel, anta at Y er en lineær funksjon av X1, X2 og en AR (2) feil. Du vil skrive denne modellen som følger: Samtalen til AR må komme etter alle likningene som prosessen gjelder for. Den foregående makrooppkallingen, AR (y, 2), produserer setningene som vises i LIST-utgangen i figur 18.58. Figur 18.58 LIST Option Output for en AR (2) - modell PRED-prefikserte variabler er midlertidige programvariabler som brukes, slik at lagene på residualene er de riktige residualene og ikke de som er omdefinert av denne ligningen. Merk at dette tilsvarer uttalelsene som er uttrykkelig skrevet i avsnittet Generell skjema for ARMA-modeller. Du kan også begrense de autoregressive parametrene til null ved valgte lag. For eksempel, hvis du vil ha autoregressive parametere på lag 1, 12 og 13, kan du bruke følgende setninger: Disse setningene genererer utgangen vist i Figur 18.59. Figur 18.59 LIST Option Output for en AR-modell med Lags på 1, 12 og 13 MODEL Prosedyreoppføring av kompilert programkodestatus som analysert PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - AKTUELT. ERROR. y PRED. y - y Det er variasjoner på den betingede minste kvadratmetoden, avhengig av om observasjoner ved starten av serien brukes til å varme opp AR-prosessen. Som standard bruker AR-betinget minste kvadratmetoden alle observasjonene og antar nuller for de første lagene av autoregressive termer. Ved å bruke M-alternativet, kan du be om at AR bruker stedet for ubetinget minste kvadrat (ULS) eller maksimal sannsynlighet (ML) i stedet. For eksempel er diskusjoner av disse metodene gitt i avsnittet AR Initial Conditions. Ved å bruke MCLS n-alternativet, kan du be om at de første n observasjonene brukes til å beregne estimater av de første autoregressive lagene. I dette tilfellet starter analysen med observasjon n 1. For eksempel: Du kan bruke AR-makroen til å bruke en autoregressiv modell til den endogene variabelen, i stedet for til feilperioden, ved å bruke TYPEV-alternativet. Hvis du for eksempel vil legge til de fem siste lagene til Y til ligningen i forrige eksempel, kan du bruke AR til å generere parametrene og lagre ved å bruke følgende setninger: De foregående setningene genererer utgangen vist i Figur 18.60. Figur 18.60 LIST Alternativutgang for en AR-modell av Y Denne modellen forutsier Y som en lineær kombinasjon av X1, X2, en avskjæring og verdiene for Y i de siste fem periodene. Ubegrenset Vector Autoregression Hvis du vil modellere feilvilkårene for et sett med ligninger som en vektorautoregressiv prosess, bruker du følgende form for AR-makroen etter likningene: Prosessnavnverdien er et hvilket som helst navn du oppgir for AR å bruke til å lage navn for autoregressive parametre. Du kan bruke AR-makroen til å modellere flere forskjellige AR-prosesser for forskjellige sett med ligninger ved å bruke forskjellige prosessnavn for hvert sett. Prosessnavnet sikrer at variabelenavnene som brukes, er unike. Bruk en kort prosessnavn verdi for prosessen hvis parameter estimater skal skrives til et utdata datasett. AR-makroen forsøker å konstruere parameternavn mindre enn eller lik åtte tegn, men dette er begrenset av lengden på prosessnavn. som brukes som prefiks for AR-parameternavnene. Variablelistverdien er listen over endogene variabler for ligningene. For eksempel, anta at feil for ligningene Y1, Y2 og Y3 er generert av en andreordsvektor autoregressiv prosess. Du kan bruke følgende setninger: som genererer følgende for Y1 og lignende kode for Y2 og Y3: Bare metodene med betinget minste kvadrat (MCLS eller MCLS n) kan brukes til vektorprosesser. Du kan også bruke samme skjema med begrensninger at koeffisjonsmatrisen er 0 på utvalgte lag. Følgende setninger bruker for eksempel en tredje ordensvektprosess til ligningsfeilene med alle koeffisientene ved lag 2 begrenset til 0 og med koeffisientene ved lag 1 og 3 ubegrenset: Du kan modellere de tre serie Y1Y3 som en vektor-autoregressiv prosess i variablene i stedet for i feilene ved å bruke TYPEV-alternativet. Hvis du vil modellere Y1Y3 som en funksjon av tidligere verdier av Y1Y3 og noen eksogene variabler eller konstanter, kan du bruke AR til å generere setningene for lagbetingelsene. Skriv en ligning for hver variabel for den ikke-autoregressive delen av modellen, og ring deretter AR med TYPEV-alternativet. For eksempel kan den ikke-autoregressive delen av modellen være en funksjon av eksogene variabler, eller det kan skilles parametere. Hvis det ikke finnes eksogene komponenter til vektorgruppens autoregresjonsmodell, inkludert ingen avlyttinger, tilordner du null til hver av variablene. Det må være en oppgave til hver av variablene før AR kalles. Dette eksemplet modellerer vektoren Y (Y1 Y2 Y3) som en lineær funksjon bare av verdien i de to foregående periodene og en hvit støyfeilvektor. Modellen har 18 (3 3 3 3) parametere. Syntax av AR Macro Det er to tilfeller av syntaksen til AR-makroen. Når det ikke er behov for restriksjoner på en AR-vektorprosess, har syntaksen til AR-makroen den generelle formen spesifiserer et prefiks for AR som skal brukes til å konstruere navn på variabler som trengs for å definere AR-prosessen. Hvis endolisten ikke er spesifisert, angir den endogene listen som navnet. som må være navnet på ligningen som AR feilprosessen skal brukes på. Navneverdien kan ikke overstige 32 tegn. er ordren til AR-prosessen. spesifiserer listen over likninger som AR-prosessen skal brukes på. Hvis mer enn ett navn er gitt, opprettes en ubegrenset vektorprosess med de strukturelle rester av alle ligningene som er inkludert som regressorer i hver av ligningene. Hvis ikke spesifisert, angir endolisten navnet. angir listen over lag som AR-vilkårene skal legges til. Koeffisientene til betingelsene ved lags ikke listet er satt til 0. Alle de listede lagene må være mindre enn eller lik nlag. og det må ikke være duplikater. Hvis ikke spesifisert lagrer laglisten til alle lag 1 til nlag. angir estimeringsmetoden som skal implementeres. Gyldige verdier av M er CLS (estimater med betingede minste kvadrater), ULS (ubetingede minstkvadratestimater) og ML (maksimal sannsynlighet estimater). MCLS er standard. Bare MCLS er tillatt når mer enn en ligning er angitt. ULS - og ML-metodene støttes ikke for vektor AR-modeller av AR. angir at AR-prosessen skal påføres de endogene variablene selv i stedet for til de strukturelle residualene i ligningene. Begrenset Vector Autoregression Du kan kontrollere hvilke parametere som er inkludert i prosessen, begrense til 0 de parametrene du ikke inkluderer. Bruk først AR med alternativet DEFER til å erklære variabellisten og definere dimensjonen av prosessen. Deretter bruker du flere AR-anrop for å generere vilkår for utvalgte ligninger med utvalgte variabler på utvalgte lag. F. eks. Feilligningene som er produsert, er som følger: Denne modellen sier at feilene for Y1 avhenger av feilene til både Y1 og Y2 (men ikke Y3) i begge lag 1 og 2, og at feilene for Y2 og Y3 avhenger av De forrige feilene for alle tre variablene, men bare ved lag 1. AR Makro syntaks for begrenset vektor AR En alternativ bruk av AR har lov til å pålegge restriksjoner på en vektor AR-prosess ved å ringe AR flere ganger for å angi forskjellige AR-termer og lags for forskjellige ligninger. Den første anropet har den generelle formen angir et prefiks for AR å bruke til å bygge navn på variabler som trengs for å definere vektor AR-prosessen. angir rekkefølgen av AR-prosessen. spesifiserer listen over likninger som AR-prosessen skal brukes på. angir at AR ikke skal generere AR-prosessen, men skal vente på ytterligere informasjon angitt i senere AR-anrop for samme navneverdi. De påfølgende anropene har den generelle formelen den samme som i den første anropet. spesifiserer listen over likninger som spesifikasjonene i denne AR-anropet skal brukes til. Bare navn som er spesifisert i endolistverdien til den første anropen for navnverdien, kan vises i listen over likninger i eqlist. spesifiserer listen over ligninger hvis lagrede strukturelle residualer skal inkluderes som regressorer i ligningene i eqlist. Bare navn i endolisten til det første anropet for navnverdien kan vises i varlisten. Hvis ikke spesifisert, varsler standard til endolist. angir listen over lag som AR-vilkårene skal legges til. Koeffisientene til betingelsene ved lags ikke listet er satt til 0. Alle de listede lagene må være mindre enn eller lik verdien av nlag. og det må ikke være duplikater. Hvis ikke spesifisert, lagliste standard til alle lag 1 til nlag. MA Macro SAS makro MA genererer programmeringserklæringer for PROC MODEL for flyttende gjennomsnittlige modeller. MA-makroen er en del av SASETS-programvaren, og det kreves ingen spesielle alternativer for å bruke makroen. Feilprosessen med bevegelige gjennomsnitt kan påføres strukturelle ligningsfeil. Syntaxen til MA-makroen er den samme som AR-makroen, bortsett fra at det ikke er noen TYPE-argument. Når du bruker MA og AR-makroene kombinert, må MA-makroen følge AR-makroen. Følgende SASIML-setninger produserer en ARMA (1, (1 3)) feilprosess og lagrer den i datasettet MADAT2. Følgende PROC MODEL-setninger brukes til å estimere parametrene til denne modellen ved å bruke maksimal sannsynlighet feil struktur: Estimatene av parametrene produsert av denne løp er vist i Figur 18.61. Figur 18.61 Estimater fra en ARMA (1, (3)) prosess Det er to tilfeller av syntaksen for MA makroen. Når det ikke er behov for restriksjoner på en vektor MA-prosess, har syntaksen til MA-makroen den generelle formen spesifiserer et prefiks for MA som skal brukes til å konstruere navn på variabler som trengs for å definere MA prosessen og er standard endolisten. er bestillingen av MA prosessen. spesifiserer likningene som MA-prosessen skal brukes på. Hvis mer enn ett navn er gitt, brukes CLS estimering for vektorprosessen. spesifiserer lagene der MA-vilkårene skal legges til. Alle de listede lagene må være mindre enn eller lik nlag. og det må ikke være duplikater. Hvis ikke spesifisert lagrer laglisten til alle lag 1 til nlag. angir estimeringsmetoden som skal implementeres. Gyldige verdier av M er CLS (estimater med betingede minste kvadrater), ULS (ubetingede minstkvadratestimater) og ML (maksimal sannsynlighet estimater). MCLS er standard. Kun MCLS er tillatt når mer enn en ligning er spesifisert i endolisten. MA Makro syntaks for begrenset vektor Flyttende Gjennomsnitt En alternativ bruk av MA er tillatt å pålegge begrensninger på en vektor MA prosess ved å ringe MA flere ganger for å angi forskjellige MA-termer og lags for forskjellige ligninger. Den første anropet har den generelle formen spesifiserer et prefiks for MA å bruke til å konstruere navn på variabler som trengs for å definere vektor MA prosessen. angir rekkefølgen av MA prosessen. spesifiserer listen over likninger som MA-prosessen skal brukes på. angir at MA ikke skal generere MA prosessen, men skal vente på ytterligere informasjon angitt i senere MA-samtaler for samme navneverdi. De påfølgende anropene har den generelle formelen den samme som i den første anropet. spesifiserer listen over likninger som spesifikasjonene i dette MA-samtalen skal brukes til. spesifiserer listen over ligninger hvis lagrede strukturelle residualer skal inkluderes som regressorer i ligningene i eqlist. spesifiserer listen over lag som MA-vilkårene skal legges til. Utviklingsregistrerende, gjennomsnittlige feilprosesser 13 13 13 13 13 13 Autoregressive bevegelige gjennomsnittlige feilprosesser (ARMA-feil) og andre modeller som involverer feilfeil, kan estimeres ved hjelp av FIT-setninger og simulert eller prognose ved å bruke SOLVE-setninger. ARMA modeller for feilprosessen brukes ofte til modeller med autokorrelerte rester. AR-makroen kan brukes til å spesifisere modeller med autoregressive feilprosesser. MA-makroen kan brukes til å spesifisere modeller med bevegelige gjennomsnittlige feilprosesser. Autoregressive feil En modell med førstegangs autoregressive feil, AR (1), har skjemaet mens en AR (2) feilprosess har skjemaet og så videre for høyere rekkefølge prosesser. Merk at s er uavhengige og identisk fordelte og har en forventet verdi på 0. Et eksempel på en modell med en AR (2) komponent er. Du ville skrive denne modellen på følgende måte: eller tilsvarende med å bruke AR-makroen som Moving Average Models 13 A modell med første ordens bevegelige gjennomsnittlige feil, MA (1), har skjemaet der det er identisk og uavhengig distribuert med gjennomsnittlig null. En MA (2) feilprosess har formen og så videre for høyere rekkefølge prosesser. For eksempel kan du skrive en enkel lineær regresjonsmodell med MA (2) flytte gjennomsnittlige feil som hvor MA1 og MA2 er de bevegelige gjennomsnittlige parametrene. Merk at RESID. Y automatisk er definert av PROC MODEL som Merk at RESID. Y er. ZLAG-funksjonen må brukes til MA-modeller for å avkorte rekursjonen av lags. Dette sikrer at de forsinkede feilene starter ved null i forsinkelsesfasen og ikke propagerer manglende verdier når forsinkelsesperiodevariabler mangler, og sikrer at fremtidige feil er null i stedet for å bli savnet under simulering eller prognoser. For detaljer om lagfunksjonene, se delen 34Lag Logic.34 Denne modellen som er skrevet med MA-makroen, er generell form for ARMA-modeller. Den generelle ARMA (p, q) prosessen har følgende formular. En ARMA (p, q) modell kan være spesifisert som følger hvor AR i og MA j representerer de autoregressive og bevegelige gjennomsnittsparametrene for de forskjellige lagene. Du kan bruke noen navn du vil ha for disse variablene, og det finnes mange tilsvarende måter som spesifikasjonen kan skrives på. Vector ARMA prosesser kan også estimeres med PROC MODEL. For eksempel kan en tovariabel AR (1) - prosess for feilene i de to endogene variablene Y1 og Y2 spesifiseres som følger Konvergensproblemer med ARMA-modeller ARMA-modeller kan være vanskelig å estimere. Hvis parametrisestimatene ikke ligger innenfor det aktuelle området, vil gjenværende termer i flytende gjennomsnittsmodell vokse eksponentielt. De beregnede residualene for senere observasjoner kan være svært store eller kan overflyte. Dette kan skje enten fordi feil startverdier ble brukt eller fordi iterasjonene flyttet vekk fra rimelige verdier. Pasienten bør brukes til å velge startverdier for ARMA-parametere. Startverdier for .001 for ARMA-parametere virker vanligvis hvis modellen passer godt til data og problemet er godt betinget. Legg merke til at en MA-modell ofte kan tilnærmet seg med en AR-modell med høy rekkefølge, og omvendt. Dette kan føre til høy kollinearitet i blandede ARMA-modeller, som igjen kan forårsake alvorlig dårlig konditionering i beregningene og ustabiliteten til parameterestimatene. Hvis du har konvergensproblemer mens du vurderer en modell med ARMA-feilprosesser, kan du prøve å estimere i trinn. Bruk først en FIT-setning for å estimere bare strukturparametrene med ARMA-parametrene holdt til null (eller til fornuftige tidligere estimater hvis tilgjengelig). Deretter bruker du en annen FIT-setning for å bare estimere ARMA-parametrene, ved hjelp av strukturelle parameterverdier fra første runde. Siden verdiene til strukturparametrene sannsynligvis vil være nær de endelige estimatene, kan ARMA-parameterestimatene nå konvergere. Til slutt, bruk en annen FIT-setning for å produsere samtidige estimater av alle parametrene. Siden de første verdiene til parametrene nå er sannsynligvis ganske nær deres endelige felles estimater, bør estimatene konvergere raskt hvis modellen passer for dataene. AR Initial Conditions 13 13 13 13 13 13 13 13 13 13 De første lagene til feilvilkårene for AR (p) - modellene kan modelleres på forskjellige måter. De autoregressive feiloppstartsmetoder som støttes av SASETS-prosedyrer, er følgende: CLS-betingede minste kvadrater (ARIMA - og MODEL-prosedyrer) ULS ubetingede minstefirkanter (AUTOREG, ARIMA og MODEL prosedyrer) ML maksimal sannsynlighet (AUTOREG, ARIMA og MODEL prosedyrer) YW Yule - Walker (kun AUTOREG-prosedyre) HL Hildreth-Lu, som sletter de første p-observasjonene (kun MODEL-prosedyre) Se kapittel 8. for en forklaring og diskusjon av fordelene ved ulike AR (p) oppstartsmetoder. CLS, ULS, ML og HL initialiseringer kan utføres av PROC MODEL. For AR (1) feil, kan disse initialiseringene produseres som vist i tabell 14.2. Disse metodene er ekvivalente i store prøver. Tabell 14.2: Initialiseringer utført av PROC MODEL: AR (1) FEIL MA Initielle forhold 13 13 13 13 13 13 De første lagene til feilvilkårene for MA (q) - modellene kan også modelleres på forskjellige måter. Følgende bevegelige gjennomsnittlige feiloppstartsparadigrammer støttes av ARIMA - og MODEL-prosedyrene: ULS ubetingede minstefelt CLS betinget minste firkanter ML maksimal sannsynlighet Den betingede minst-kvadratmetoden for estimering av bevegelige gjennomsnittlige feilvilkår er ikke optimal fordi den ignorerer oppstartsproblemet. Dette reduserer estimatets effektivitet, selv om de forblir objektive. De innledende forsinkede residuene, som strekker seg før data begynner, antas å være 0, deres ubetingede forventede verdi. Dette introduserer en forskjell mellom disse residuene og de generaliserte minstkvadratresidansene for den bevegelige gjennomsnittlige kovariansen, som, i motsetning til den autoregressive modellen, fortsetter gjennom datasettet. Vanligvis er denne forskjellen konvergerende raskt til 0, men for nesten ikke-omvendt bevegelige gjennomsnittlige prosesser er konvergensen ganske langsom. For å minimere dette problemet, bør du ha masse data, og de bevegelige gjennomsnittlige parametervurderingene skal ligge godt innenfor det inverterbare området. Dette problemet kan korrigeres på bekostning av å skrive et mer komplekst program. Ubetingede minimumskvoter estimater for MA (1) prosessen kan produseres ved å spesifisere modellen som følger: Flytte-gjennomsnittlige feil kan være vanskelig å estimere. Du bør vurdere å bruke en AR (p) tilnærming til den bevegelige gjennomsnittlige prosessen. En bevegelig gjennomsnittsprosess kan vanligvis være godt tilnærmet ved en autoregressiv prosess hvis dataene ikke har blitt jevnet eller differensiert. AR Macro SAS makro AR genererer programmeringsuttalelser for PROC MODEL for autoregressive modeller. AR-makroen er en del av SASETS-programvaren, og ingen spesielle alternativer må settes for å bruke makroen. Den autoregressive prosessen kan brukes på strukturelle ligningsfeilene eller til den endogene serien selv. AR-makroen kan brukes til univariate autoregression ubegrenset vektor autoregresjonsbegrenset vektor autoregression. Univariate Autoregression 13 For å modellere feilbegrepet for en ligning som en autoregressiv prosess, bruk følgende setning etter ligningen: For eksempel, anta at Y er en lineær funksjon av X1 og X2, og en AR (2) feil. Du vil skrive denne modellen som følger: Samtalen til AR må komme etter alle likningene som prosessen gjelder for. Den prosesserende makroinnkallingen, AR (y, 2), produserer setningene som vises i LIST-utgangen i figur 14.49. Figur 14.50: LIST Option Output for en AR-modell med Lags på 1, 12 og 13 Det er variasjoner på den betingede minst-kvadrat-metoden, avhengig av om observasjoner i starten av serien brukes til å oppvarme 34 AR-prosessen. Som standard bruker AR betinget minst kvadratmetoden alle observasjonene og antar nuller for de første lagene av autoregressive termer. Ved å bruke M-alternativet, kan du be om at AR bruker stedet for ubetinget minst kvadrat (ULS) eller maksimal sannsynlighet (ML) i stedet. For eksempel: Diskusjoner av disse metodene er gitt i 34AR Initial Conditions34 tidligere i denne delen. Ved å bruke MCLS n-alternativet, kan du be om at de første n observasjonene brukes til å beregne estimater av de første autoregressive lagene. I dette tilfellet starter analysen med observasjon n 1. For eksempel: Du kan bruke AR-makroen til å bruke en autoregressiv modell til den endogene variabelen, i stedet for til feilperioden, ved å bruke TYPEV-alternativet. Hvis du for eksempel vil legge til de fem siste lagene av Y til ligningen i forrige eksempel, kan du bruke AR til å generere parametrene og lagre ved å bruke følgende setninger: De foregående setningene genererer utgangen vist i Figur 14.51. Modellen Prosedyreoppføring av kompilert programkodeoppgave som analysert PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y) yl2 ZLAG2 (y) yl2 ZLAG2 ) Yl3 ZLAG3 (y) yl4 ZLAG4 (y) yl5 ZLAG5 (y) RESID. y PRED. y - AKTUELT. ERROR. y PRED. y - y Figur 14.51: LIST Alternativ Utgang for en AR-modell av Y Denne modellen forutsetter Y som en lineær kombinasjon av X1, X2, en avskjæring og verdiene av Y i de siste fem periodene. Ubegrenset Vector Autoregression 13 For å modellere feilvilkårene for et sett med ligninger som en vektorgotoregressiv prosess, bruk følgende form for AR-makroen etter likningene: Prosessnavnverdien er et hvilket som helst navn du forsyner for å bruke AR til å lage navn på autoregressive parametere. Du kan bruke AR-makroen til å modellere flere forskjellige AR-prosesser for forskjellige sett med ligninger ved å bruke forskjellige prosessnavn for hvert sett. Prosessnavnet sikrer at variabelenavnene som brukes, er unike. Bruk en kort prosessnavn verdi for prosessen hvis parameter estimater skal skrives til et utdata datasett. AR-makroen forsøker å konstruere parameternavn mindre enn eller lik åtte tegn, men dette er begrenset av lengden på navnet. som brukes som prefiks for AR-parameternavnene. Variablelistverdien er listen over endogene variabler for ligningene. For eksempel, anta at feil for ligningene Y1, Y2 og Y3 er generert av en andreordsvektor autoregressiv prosess. Du kan bruke følgende setninger: som genererer følgende for Y1 og lignende kode for Y2 og Y3: Kun den betingede minste-kvadrat (MCLS eller MCLS n) - metoden kan brukes til vektorprosesser. Du kan også bruke samme skjema med begrensninger at koeffisjonsmatrisen er 0 på utvalgte lag. For eksempel bruker setningene en tredje ordens vektorfaktor til ligningsfeilene med alle koeffisientene ved lag 2 begrenset til 0 og med koeffisientene ved lag 1 og 3 ubegrenset. Du kan modellere de tre seriene Y1-Y3 som en vektor autoregressiv prosess i variablene i stedet for i feilene ved å bruke TYPEV-alternativet. Hvis du vil modellere Y1-Y3 som en funksjon av tidligere verdier av Y1-Y3 og noen eksogene variabler eller konstanter, kan du bruke AR til å generere setningene for lagbetingelsene. Skriv en ligning for hver variabel for den ikke-autoregressive delen av modellen, og ring deretter AR med TYPEV-alternativet. For eksempel kan den ikke-autoregressive delen av modellen være en funksjon av eksogene variabler, eller det kan være avskjæringsparametere. Hvis det ikke finnes eksogene komponenter til vektorgruppens autoregresjonsmodell, inkludert ingen avlyttinger, tilordner du null til hver av variablene. Det må være en oppgave til hver av variablene før AR kalles. Dette eksemplet modellerer vektoren Y (Y1 Y2 Y3) som en lineær funksjon bare av verdien i de to foregående periodene og en hvit støyfeilvektor. Modellen har 18 (3 ganger 3 3 ganger 3) parametere. Syntax av AR Macro Det er to tilfeller av syntaksen til AR-makroen. Den første har det generelle formnavnet angir et prefiks for AR å bruke til å bygge navn på variabler som trengs for å definere AR-prosessen. Hvis endolisten ikke er spesifisert, angir den endogene listen som navnet. som må være navnet på ligningen som AR feilprosessen skal brukes på. Navneverdien kan ikke overstige åtte tegn. nlag er rekkefølgen av AR prosessen. endolist angir listen over likninger som AR-prosessen skal brukes på. Hvis mer enn ett navn er gitt, opprettes en ubegrenset vektorprosess med de strukturelle rester av alle ligningene som er inkludert som regressorer i hver av ligningene. Hvis ikke spesifisert, angir endolisten navnet. laglist spesifiserer listen over lag som AR-vilkårene skal legges til. Koeffisientene til betingelsene ved lags ikke listet er satt til 0. Alle de listede lagene må være mindre enn eller lik nlag. og det må ikke være duplikater. Hvis ikke spesifisert lagrer laglisten til alle lag 1 til nlag. M-metoden angir estimeringsmetoden som skal implementeres. Gyldige verdier av M er CLS (estimater for minstestrekning), ULS (ubetingede minst-kvadrater estimater) og ML (maksimal sannsynlighet estimater). MCLS er standard. Bare MCLS er tillatt når mer enn en ligning er angitt. ULS - og ML-metodene støttes ikke for vektor AR-modeller av AR. TYPEV angir at AR-prosessen skal påføres de endogene variablene selv i stedet for til de strukturelle residualene til ligningene. Begrenset Vector Autoregression 13 13 13 13 Du kan kontrollere hvilke parametere som er inkludert i prosessen, begrense de parametrene som du ikke inkluderer til 0. Først bruk AR med DEFER-alternativet til å erklære variabellisten og definere dimensjonen av prosessen. Deretter bruker du flere AR-anrop for å generere vilkår for utvalgte ligninger med utvalgte variabler på utvalgte lag. For eksempel er Feilligningene produsert Denne modellen sier at feilene for Y1 avhenger av feilene i både Y1 og Y2 (men ikke Y3) i begge lag 1 og 2, og at feilene for Y2 og Y3 avhenger av de forrige feilene for alle tre variablene, men bare ved lag 1. AR Makro-syntaks for begrenset vektor AR En alternativ bruk av AR har lov til å pålegge restriksjoner på en vektor AR-prosess ved å ringe AR flere ganger for å angi forskjellige AR-termer og lags for forskjellige ligninger. Den første anropet har det generelle formnavnet angir et prefiks for AR å bruke til å konstruere navn på variabler som trengs for å definere vektor AR-prosessen. nlag spesifiserer rekkefølgen av AR-prosessen. endolist angir listen over likninger som AR-prosessen skal brukes på. DEFER angir at AR ikke skal generere AR-prosessen, men skal vente på ytterligere informasjon angitt i senere AR-anrop for samme navneverdi. De påfølgende anropene har generell skjema navn er det samme som i første anrop. eqlist spesifiserer listen over likninger som spesifikasjonene i denne AR-anropet skal brukes til. Bare navn som er spesifisert i endolistverdien til den første anropen for navnverdien, kan vises i listen over likninger i eqlist. varlist spesifiserer listen over ligninger hvis lagrede strukturelle residualer skal inkluderes som regressorer i ligningene i eqlist. Bare navn i endolisten til det første anropet for navnverdien kan vises i varlisten. Hvis ikke spesifisert, varsler standard til endolist. laglist spesifiserer listen over lag som AR-vilkårene skal legges til. Koeffisientene til betingelsene ved lags ikke listet er satt til 0. Alle de listede lagene må være mindre enn eller lik verdien av nlag. og det må ikke være duplikater. Hvis ikke spesifisert, lagliste standard til alle lag 1 til nlag. MA Macro 13 SAS makro MA genererer programmeringserklæringer for PROC MODEL for å flytte gjennomsnittlige modeller. MA-makroen er en del av SASETS-programvaren, og det kreves ingen spesielle alternativer for å bruke makroen. Den bevegelige gjennomsnittlige feilprosessen kan påføres strukturelle ligningsfeil. Syntaxen til MA-makroen er den samme som AR-makroen, bortsett fra at det ikke er noen TYPE-argument. 13 Når du bruker MA og AR-makroene, må MA-makroen følge AR-makroen. Følgende SASIML-setninger produserer en ARMA (1, (1 3)) feilprosess og lagrer den i datasettet MADAT2. Følgende PROC MODEL-setninger brukes til å estimere parametrene til denne modellen ved å bruke maksimal sannsynlighet feil struktur: Estimatene av parametrene produsert av denne løp er vist i Figur 14.52. Maksimal sannsynlighet ARMA (1, (3)) Figur 14.52: Estimater fra en ARMA (1, (1 3)) Prosesssyntax av MA Macro Det er to tilfeller av syntaksen for MA-makroen. Den første har det generelle formnavnet spesifiserer et prefiks for MA å bruke til å konstruere navn på variabler som trengs for å definere MA prosessen og er standard endolisten. nlag er rekkefølgen av MA prosessen. endolist angir likningene som MA-prosessen skal brukes på. Hvis mer enn ett navn er gitt, brukes CLS estimering for vektorprosessen. laglist spesifiserer lagene der MA-vilkårene skal legges til. Alle de listede lagene må være mindre enn eller lik nlag. og det må ikke være duplikater. Hvis ikke spesifisert lagrer laglisten til alle lag 1 til nlag. M-metoden angir estimeringsmetoden som skal implementeres. Gyldige verdier av M er CLS (estimater for minstestrekning), ULS (ubetingede minst-kvadrater estimater) og ML (maksimal sannsynlighet estimater). MCLS er standard. Bare MCLS er tillatt når mer enn en ligning er spesifisert på endolisten. MA Makro syntaks for Begrenset Vector Moving Gjennomsnitt 13 En alternativ bruk av MA har lov til å pålegge restriksjoner på en vektor MA prosess ved å ringe MA flere ganger for å angi forskjellige MA-termer og lags for forskjellige ligninger. Den første anropet har det generelle formnavnet angir et prefiks for MA som skal brukes til å konstruere navn på variabler som trengs for å definere vektor MA prosessen. nlag spesifiserer rekkefølgen av MA prosessen. endolist angir listen over likninger som MA-prosessen skal brukes på. DEFER angir at MA ikke skal generere MA prosessen, men skal vente på ytterligere informasjon angitt i senere MA-samtaler for samme navneverdi. De påfølgende anropene har generell skjema navn er det samme som i første anrop. eqlist spesifiserer listen over likninger som spesifikasjonene i dette MA-samtalen skal brukes til. varlist spesifiserer listen over ligninger hvis lagrede strukturelle residualer skal inkluderes som regressorer i ligningene i eqlist. laglist spesifiserer listen over lag som MA-vilkårene skal legges til. Utødeleggende Moving-Average Simulation (First Order) Demonstrasjonen er satt slik at samme tilfeldige serie punkter brukes uansett hvordan konstantene er varierte. Men når kvoten kvitteringsknappen trykkes, vil en ny tilfeldig serie bli generert og brukt. Å holde den tilfeldige serien identisk tillater brukeren å se nøyaktig effektene på ARMA-serien av endringer i de to konstantene. Konstanten er begrenset til (-1,1) fordi divergens av ARMA-serien resulterer når. Demonstrasjonen er kun for en første bestillingsprosess. Ytterligere AR-betingelser ville muliggjøre mer komplekse serier som skal genereres, mens flere MA-termer vil øke utjevningen. For en detaljert beskrivelse av ARMA-prosesser, se for eksempel G. Box, G. M. Jenkins og G. Reinsel, Time Series Analysis: Forecasting and Control. 3. utg. Englewood Cliffs, NJ: Prentice-Hall, 1994. RELATERTE LINKSDokumentasjon er det ubetingede gjennomsnittet av prosessen, og x03C8 (L) er et rasjonelt, uendelig gradforsinkelsespolynom, (1 x03C8 1 L x03C8 2 L 2 x2026). Merk: Konstantegenskapen til et arima-modellobjekt samsvarer med c. og ikke det ubetingede gjennomsnittet 956. Ved Wolds dekomponering 1. Ligning 5-12 tilsvarer en stasjonær stokastisk prosess forutsatt at koeffisientene x03C8 jeg er absolutt summerbare. Dette er tilfellet når AR-polynomet, x03D5 (L). er stabil. som betyr at alle røttene ligger utenfor enhetens sirkel. I tillegg er prosessen kausal forutsatt at MA-polynomet er inverterbart. som betyr at alle røttene ligger utenfor enhetens sirkel. Econometrics Toolbox styrker stabiliteten og invertibility av ARMA prosesser. Når du angir en ARMA-modell ved hjelp av arima. du får en feil hvis du angir koeffisienter som ikke samsvarer med et stabilt AR-polynomial eller inverterbart MA-polynom. På samme måte pålegger estimatene stasjonar og invertibilitetsbegrensninger under estimering. Referanser 1 Wold, H. En studie i analysen av stationær tidsserie. Uppsala, Sverige: Almqvist amp Wiksell, 1938. Velg ditt land

No comments:

Post a Comment